CRISPR Plasmid Panel Benchmark
This benchmark ties Helix's CRISPR and prime editing outcome models to a simple synthetic plasmid library abstraction.
- Spec template:
templates/lab_crispr_plasmid_bench.helix.yml - Harness:
benchmarks/crispr_plasmid_panel.py
Spec shape
The panel config declares one or more plasmid targets:
reference_sequenceorreference_fasta– digital DNA window.guides[]– CRISPR guides withsequence,pam_profile, and optionalsimulationoverrides (draws,priors_profile,seed).prime_pegs[]– optional prime editing pegRNAs withspacer,pbs,rtt, and optionalsimulationoverrides.- Each guide/peg may carry a
measurementsblock pointing at an amplicon counts table (counts_file,label_column,count_column, optionaltimepoint_h).
Running the benchmark
Example invocation:
python -m benchmarks.crispr_plasmid_panel \
--config templates/lab_crispr_plasmid_bench.helix.yml \
--out bench-results/plasmid_panel.json
The harness:
- Runs
helix.crispr.simulate.simulate_cut_repairfor each CRISPR guide. - Runs
helix.prime.simulator.simulate_prime_editfor each prime pegRNA. - Loads counts (when available), normalizes to probability distributions, and reports L1 distance and Jensen–Shannon divergence between simulated and observed outcome spectra.
The JSON output (crispr_plasmid_panel schema) records per-target/per-guide metrics plus aggregate means, suitable for CI tracking or methods figures.